
NATIONALADVISORYCOMMITTEE
FOR AERONAUTICS

TECHNICAL MEMORANDUM

No. 1153

CALCULATION OF THE PRESSURE DISTRIBUTION ON BODIES

OF REVOLUTION IN THE SUBSONIC FLOW OF A G&3

PART I - AXIALLY SYMMETRICAL FLOW

By Herbert Bilharz and Ernst Holder

Translation

UZur Berechnung der Druckverteilung an Rotationskorpern in der Unter -
scha.1.lstr6mung eines Gases Teil I: Achsensymmetrische Str6mung”

Deutsche Luftfahrtforschung, Forschungsbericht Nr. 1169/1

Washington

July 1947



q!!!l!!!!!!!l!!lll~_____.—----—
NATIONAL ADTK50RY COMMITTEE FOR AERONAUTICS

TECRNICALMEMORANIMM NO ● 1253
——,

CALCULATION OF THE PRESSURE DISTRIBUTION OH BOD7JK3

OF REVOLUTION IN THE SUBSONIC FLOW OF A GAS

PART I - AXIALLY SYMMETRICAL

By Her3ert Bilharz and Ernst

I t INTRODUCTION

The present report concezms a methoclof

FLOW*

H51der

computing the velocfty
and prese{me,distri~utions on bodtes of revolub3& in--axiallystitrical
flow in the subsonic range.

The differential equation for the velocity potential O of a
compressible flu~.dmotion is linearized tn the conventional manner,
ant then wt in the form ~ = O by af’finetransformation. The
qusnttty a represents the velocity potential of a,fict~ticms incom-
pressible flow, for which a constant superposition of,sources by
eections,is secured by a methcd patterned after von Kar&n (reference 1)

awhich must comply with the boundary condition -- = O at the origl-
~n

nally specified contolrr. This requirement y3elds for the “pseudo-
stream function” $ adifferentifi equation which mustbe fulfilled
for as many points on the contour RS sciurcelengths are assumed. In
this manner, the problem of defining the still unhioi~ source intensi-
ties is reduced to the solut:.onof an inhomogeneous equati.ansystem.
The pressure distribution Is then determined with the aid of Bexmoulli’s
equation and the

Lastly, the
pressible medium

adiabatic equ,ationof state,

pressure distribute.onsin compressible and lncom-
ai-ecompared on a model problem.

*“Zur Berechnung d.erDruckverteilung an Rotatlonskdrpern in der
Unterschalldnihmg eines Gaaes Teil I: AchseTmymmemlsck2 Strbmung,”
Zen%r~ie ft!rwissenschaftllchesBerichtswesen i:berLuftf:J.r’tforschun~
(ZWL) i3erlin-Adlershof,ForschungsberichtNr. 11.69/1, Brau.mchweig,
Jane 15, 1940.
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11. STATIONARY POTENTIAL FLOW

The discussion is restricted to a frictionless compressible fluid
and It is assumed that the density of the medium is solely dependent
upon the pressure p, while the functional relation between pressure
and den~ity Is to be monotonic and continuouslydifferentiable.

The steady motion follows then, for external conservative forces,
the law of Lagrange analogous to the frictlonless homogetieousincom-
pressible fluid: If the fr3.ctlonles6compressible fluid moves
irrotationally at time interval to, then it does so in every subsequent
time interval. t Sto. Since the state of rest is a special case of
the irrotationalmotion, the flow of a compressible fluid (nonstationary
at ffrst) starting from rest is free from rotation and certainly remains
so as long as the flow velocity at no point becomes greater than the
velocity of sound of the msdium. ArAirrotationel motion, on the other
hand, can alway~ be re resented by a velocity potential O, so that

?the velocity vector y becomes the gradient of this potential.

y= grad @

with X, y, Z denoting the rectangular
the space (y) in which the fluid moves,
of y in the directions of the axes of
expressed by components, reads

On the assumption

P = f(p)

(1)

Cartesian coordinates of
and u, v, w the components
coordinates. Equation (1),

.b
s

(2)

(3)

the equation of motion of the compressible medivm can be formally
transformed into that of the j.ncompressiblemedium by replacing in the

latter, ~ by the pressure function
P

/’pdp
P(P) =.,= ~ (4)

Po “

% is used throughout the test,and figures of this report i~
@ace ofm, which was used In the original German report.



In the absenoe of e-xternalforoes and-in stationary flow, as invariably
assumed in the following, Bernoulli~s equation reads

$+ p(p) = oonst. (5)

Lastly, the equation of continuity is needed:

The flow is then defined by (l), (5), (6), and the su~seW~nt&
discussed boundary condition (21).

Now

hence by (6) in con,ju~ct.ionwith (5)

dp
~iv ~-

V2

Tp-~o~raVz=O

Cwing to

(7)

equation (7) becomes, with observation of irrotationality, in
coordinates,



the local velecity of scund,

If the adiabatic equation of state

is used as basis, equation. (~) +.ssatisfied;
tke yessure at any poick of the medium and
(~~d~.stljrl)cd)flow at infinity; p :,nd pm

densities, K = ~ is the ratio of specific

(9)

quantity p represents
P the pressure in the
a~e the correspmding

heat of the gas (a~prcxi-

natel:r 1.141for air). Fly(5) and (T) the local sonic velocity at any
~oj.flk0-,’the redium. with the existing velocity is

(%2 - ~2) (10)

and

C“++-++$M ( 10*)

‘fP.erefore, c has a maximum value for ~= O, that is, at the stagnation
noirt, where
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The critical velocity also follows from (10*) when c = IX\ and
resolved with rsspect to v:-.

2 =C 2=
xcrit min

~i%2[+=9

for ..

l-lYm =0.8 and K = 1.~08
cm

for instance

Since Cmax is assumed at the contour while elsewk,ere in the
medium

0 may be put equal to cm in first approximation, by reason of

nar%icularly as C—>cw with increasing distance from the contour
as a result of the cmtinuity o: the flow yocess.

ITIo L1NEARIZATION

F~om (8) it is seen that j,n all CaSeS wbre all velocity

components are negligibly small compared to the sonic velocity
c~in$ equation (8) leads to equation

( 11)

I --
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If ‘theresulting velocity is no longer sufficiently small but
still below cmin, it is to be expected that the quantitative relations
in the cornmressiblemedium are altered, but the character of the flow
remaius similar to’the incompressiblemedium. It is always assumed
in the following that _V2 < ~in2 in the entire range of flow.

?A-ith(~), eql~ation (8) is written in the form

(1- 5)%’(1-$)$$
(12)

and the values at infinitjjsubstituted in the coefficients of the
second derivafiivesof 0 for u, v, w and c. Hence there follows .
by (12) a linear nartial cliffgrential equation of the second order of
the elliptical tyre with constaat coefficients.

If the x -axis cf the coordinate system y points in direction
of the ve 10City at infinity and

denotes the ratio of undisturbed stream veloojty to sonic velocity at
infinity, the substitute on

1“: tf:i5m*v=o, w= C); c=cm

gives ailajmrorriate linearization for (12).

For the velocity potential ~ the equation reads

It ~ho~ld & b~r~e in mind that

validity near the sta~nation points,
the linearization la~es its
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IV. PSEUDO-STREAMIWC~ION IN (7)

Let
1

A = + (1 - X2)-5

By affine invmsformation

the system changes to ~. The equation

M (x, y, z) = m(i, y, z)

fs to imply that to the points P(x, y, z) and ~(=, ~, E) coordinated
by A equal.potential values are to correspond (t.ransplsntingof
potential. @ from space (7) jn epace (~)).

Owing to

and (13), the potential ~

The trsmformation A

therefore satisfies the Laplace equation

(14)

therefore vlelds the rule: The flow “
C* in the conlpressib~e medium of a apace (7) canaround a contour ...

be computed in linearized fcrm in an incompressible mediumof a space (~)
by reason of the fact that in (~) the cont~ur

~ = AC.

affinely conjugated to Q is used ae basis.

~ is used throughout the text end fi,guresof this report in--
place of the symbol.~” used in the or,glnalGerman repcrt.

.
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,- The following is restricted to axially symmetricalbodiesand
axially sp~trical flow; the x-axis is the axis of rota-tiion.

Putting . ..—-

q(z, y) = 3(%, j?,0) (15)

we get, since the local function ~ on each circle orthogonal to
the x -ax~-shas a constant value,

-@(z, F) = 3(%, y, E)”= 3(X,’F, 0)

with .,

and after some conversjcns

( 16)

as the differential equation for the function ~ .

For this potential ~ there exists a function ~, continuous
its first and second nartial derivatives and well ~efined lJFto an
‘-a-~l-tiveconstant (not the Stokes stream function) which satisfies
the equction

,’

The integrability condition for (17) reads

.,

i,-
with

( 18)
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or comprted

,-

—

9

therefore (18) is fulfilled because of (16). By (17) then

Ry (&, ~o) is meant any p~ir.tin the definition range of the function
V(X, ;), that is, any roint of regularity of~(=, ~, ;) located on
the ?lwle E = C.

By (15) and (17) the velocity component of ~ in axial and radial
direction in a meridian ?.]lane(such us ; = 0, for instance) is

Introducing the terms resulticg from (19) into the relation

~ $W)=H’3
finally gives the nseudo-stream function 7 in(~):

( 19)

(20]
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V. EOUNM.RY CONDI‘TION ME? ~

Since C in (y) is streaiil15ne,the boundary condition

~zo

on C must be fulfilled for @..-

l!’hederivation of the condition resultinq prom (21) for ~ in ‘
in (~) gives

by (21).

Since

accor?.ing to A and (17) and since

we get



— ——— -—

hence

11

(22)

or

dr—...:
dx

the direction of’the tangent (as :3 the .:lane z = !),for

iristance)to tk.econtour.

In corresrofldence with the f’lo’Jvvelocity (l&, 0) at irifinitiy,

i: $& + by (17).

After iil~roducing t!ires-dimensional -olar coordi~a?xs ~, - ;3 ,
in (~), that is,

F length of vector

5 angle betwem ve~tor and axis z

F aagle of meridian plane with plane ~ s o

the velocity compofients are

The velocity potential for a simple sowce of yield Q in the
origin is

.

—
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On the basis of the spherical symmetr’ythe stream function T*
is analogous to (19)

l&5* =._ 1 &;*-— ——

hence

F* = -;(l+COSS)

The stream function To and the velocity cor,ponent is now computed
for a source of length a and constant yield q per unit l~n@l.

‘Thecontribution Gf nn element d= to To in point F amounts to

hence $0 is for the total length a

the latter because

(24)
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Q:qa

as the ‘qotalyield of a, (24) becomes

By (19) the axial and radial’velocity

/

components

Because

we get

(25)

(26)



hence finally by (26)

(2’7)

Assuning consecutive source distances of constant length a and
yield Qi(i= 1, 2, . . ., n) on the x axis- (> 1), and denoting
khc distances of a Fartic?]lar streamline point P from the erm points
of the i-th source clisbancc with ~~t Z pi and ~i” = ~i + 1
(i= l,...., n) we get by (25)

73

f-. \ (‘—~, pi “)Qj- Ci+l

/
‘+roi = - —

4: [ a
.-— —. /

(28)

i=l i:l “

~bis IIstreamfunction” is then sumerrmsed on that of the incompressible
parallel flow (amroach in nosjtive Z direction)

so that the total f’lowis

(3)
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While the curves $ : constant in the incompressiblemedium
in (?) represent ;tr~~li;es, the curve ~ = O consists of especially
the %- axis and = O must be applied for exactly as many
points of ~ as th;re are constant source distances of length a with
unknown intensity Qi- which give Qi by solution of a linear a
nonhomogeneous equation system. A somewhat different method must be
applied in the compressible medium.

VII. DETERMINATION OF SOI.RCE INTENSITIES

The dimensionless quantities

are introduced as unknowns; ~i~k’ = ~i,k and ~i,kt’ indicate the
length of the vectors reachjnq from the end noints of the i-th
source distance to the k-th boundary point on ~. By r~ason of
the uninterru~ted sequence of the .sourredistances

\
.

The radius at the k-th contour point is indic~ltedwith ~k; the boundary
pOintS on ~ are to b~ so assumed that ~k (k z 1, . . .,n)is median
Perpendicular of the k-th source distance,

Proceeding from (29) the linear equation system in the unknowns ~i
is setup. By it,in conjunction with, (~oj
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by (27)

n “3

n i

boundary condition (22) for ~ must be fulfilled from.(~1).

finfilresult.with due allowartcc for (32) is

This equation must be satjsfied for n points on
distances

~, which have the
Fk (k = 1, 2, . .. n) from the x tixis; (53) is therefore

written in the form

E Cik ~i = %-E)k(~= 1, 2,,.., n)

i,=1

(34)

/’dr
rk and

[)~k
refer to the originally qiven contour Q in (y).

For the coefficients Cik
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+ ~ (cos~i,k - COS ~i+l, k)

,. “

(35)

Transforming (34) so that the new coefficients C*ik have the property
..

c*kk = 1 (k = 1, 2,. . .,n) (56)

we get the equation system

n
—.
\\

>
()

r . ~? 1
C*ik Zi = ~ —— (k = 1, . . .,n)

/ dx k cos~ kk

i=l

(37)

with

1
C*ik = Cik

GOST kk

where Cik~ is small, when i - k is great.

Futting

dr
ak ()= arc tan . —

dx }k

finally gives
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The formulas (36) and (38) prove themselves suitable for the numerical
calculation by iteration.

VIII. DETERU?ITJA’TIONGF VEI,OCITY DISTRIBUTION

w (17)

hence the axial and radial velocity corn~onentson ~:

and the square of t~e ~agnitude of velocity

After computing the zi from (37), ~.~ and
hence by (39) and (~..@)the velocity component.

IX. PRESSURE DISTRIBUTION

Ey (10*) with the aid of (5) and (9)

(39)

(40)

~~ are kriown by (32),

(41) ‘\
\,
‘\
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and from it by expansion in powers of X2 (terms of Power higher khan
the first in A2 being disregarded]: (See reference 2.)

(42)

while 172=
-m U2 and X2 from (.40)must be inserted in (.41)and (42).

Since the line of reasoning resulting in (42) holds only for
small h, a different method fcr the pressure distribution is indicated,
which holds for all A with

and
the

I-71lvml<mx~<l
o< h==-

Cm -

which gives the l!achnumber at any point of the body and from it
local velocity of sound c.

The quantity ~ is introduced through the equation

by (~) ~ proves itself as maximum veloicity; qd (10) becomes then

;2-K-1
.y (l-112)

,
(43)

w-ith
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with c replacing 6, hence putting 1~1 : 1 the square ~ of the ‘
Mach number is by (43)

#= 2 $
P= --ii -C2 K.- ~2

and therefore

[
I(K-l)p ‘1

iyl = + F2+(~- WJ1.-

From (4) and (9) follows

dp
dPz—= ccl p ‘-2dp

P

and from it by integration
,.

P= clpK-12cp (K-l)logp

K p(y
co=— and Cl are constant.

PoK

By (!46)

dD dP
C2Z-Z

dp
—:(~-
d log p

1) P

On the other hand, by (5)

(45)

(46)

(47)
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hence, beoause of ~2 = 1

P4 Z(l-yz)

Therefore by (47) in conjunction with (43)

K-
-&(l-Y2) :c2:(K-l)P’(tc -1) c~p K-l

hence

with p. as the density in the stagnation point the integration
constant Cl becomes

1- K
Cl+.

hence by (49) finally

If p~ is the pressure in the stagnation point

21

(49)

(50)

()–,LKP .(l-Y2)+
Po P*
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by (~0), whence by (u+)

therefore

Because c? = K; we get by (51)

L. .-

hence

,— .-,

Let

L

(51)

(52)

(53)

In this instance r K -1

. 1 k )-K-1—.:-::[;:.;l.j:
1L- -d
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that is finally

the value from (~) to be inserted for u b

x, EXMMPLE

The foregoing considerations are sug~e stive of exnloring for
the first those bodies of revolutions the meridian curve c of
which is an analytical function of x in the (x, r) plaFe:

The example pro~eeds from the series of’ourves

d (n + l)n+l
r=

n“
Xn (1 - x)

with

The factor d
Tf O<n<l the

d> O, O<n<l, O<x<l
-g-

ives a measure for the bhiokness of the body.
profiles in the (x, r ) Dlane have a round forebody

and a pointed afterbody. Fornz l;- C ii symmetrical to x : 0.5,-
in which case the forebody and the afte~body are pointed,

Generally

I’lmax=d for x=+ n+l

—
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The values chosen for the parameters are

1

d=&; n=$j.~”= 0.8 (hence ,u~ = 0.64); L = + (1 - X2)-~=s
3-

Since i?= A-l r = 0.6 r, the meridian curve u of the afftne trans-
formed body lies within c. The meridian sections Q and ~ are
shown fn figure 3.

The constant lenqth a of the source distence was put at 0.1. “’
After computing the coefficients (38), the system (37) is solved
by iteration. Thereby 5.twas found that the values ~i for the
source intensities converge quicker than by the von Karm& method for
the initial body in incompressible flow. Both d3.stributionsof
vortex intensity for the same body of revolution in compressf.bleand
incompressible flow for the same flow velocity at infinity

u= 266.4m/sec-1, w. = 0.64 are included in figure s.

Figure 4 shows the velocity in terms of U; figure 5 the Mach
nuniberfor compressible flow, The Mach numler follows from (44) as

function of the velocity Iwi= ~ [%/, with ly~l=o.3368
according to figure 2 and equation (45)1

Fiagure6 represents the pressure distribution by (54) on the body
along with the pressure distribution of incompressible flow for
comparison.

The numerical values are given in table I.

XI, SUMMARY

The present i-eportgives amethod for determination of the
velocity and pressure distributions as they appear on bodies of
revolution in axially-symmetricalflow in the subsonic range of a
gas wiithadiabatic equation of state.

The differential equation for the velocity potential O of
the gas motion is first line~rized in such a manner that in the
coefficients of the second partial derivatives of @ with respect
to the coordinates for the velocity components u, v, w .sndthe
local sonic veloc~ty c the corresponding values from infinity
u = %, 0,0; cm are inserted.. There results for @ a linear
partial differential equation of the second order of elliptic type
with constant coefficients. By an affine tramformation A of the
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variables it can be converted to
nerformed linearization is valid

“nefghbbrhood of the stagnation

By the transformation A
meridian curve ~:r = r(x) is
gormal to the axis of rotation
@ as solution of the equation
potential of an tncompres~ible
is to be noted that ~ i~ not

25

the Lapla.ce form &-= O. The
only outside of a certatn

the body of revolution with the
transformed into a similar body
w~th the meridian curve ~:I? = Y(x).
/36 = O represents the velocity
fictitious flow in a space (~); it “
a etreemline. On the contrary,.the

equipotelitial lfnes ~ = Constant intersect the curve Q not
orthogonally. Thus 0 is to be determined as a. regular potential
@ction which satisfies in the outer ran~e of ~ the equation
A@ = O, at infinity has the form & = U X + reg. potential function,
and on ~ fulfills the cond3.t,ion

This last requirement results from conversion of’the boundary
condition ~O@n = O to Q for the velocity potential Q.

As in the i~co~pre~sible medium there exists far ~ a f~ction
t- “pseudo-stream function” which satisfies the conditions

in the outer ranqe of ~ eatisfies the eguetion

1 Uf2 + regular function, and on ~at infinity has the form ~= ~
satisfies the equation:
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,, ,,

!,,.

() p~+=+
A=+ l-—

cm

.

Under the assumption that the function
tinued Into the interior of the body to
be produced by a constant superposition

~ c’&nbe analytically con-.
the symmetry ~sxis, Q can
of sot’rceson the’axis.

Von Ka’rm&n’smethod mentioned at the be~inning is %ased on this
assumption: the continuous source distribution on.the axis is “
replaced by a constant superposition in sections. The number of -
source lenqthb is selected according to the desired degree of [ “
accur=y. Corresponding to this number n one chooses on the ‘
contour ~ n varying “control points;” most serviceably, on the
center perpendiculars of the source len@hs. The scl.utionof the ~
integral equation for the continuous source distribution is reduced
to a linear inhomogeneous equation system of the nth order, the
unlmcwn source intensities determined so that they satisfy the
equation (55) in the control points.

The solution of this equation system ly iteration converges
more rapidly for a body in compressiblemedium thsn for the ssme
body in a fluid of constant volume, the reason is on the one hand
the form of the coefficients which is more s~etrical than von K&&’s,
on the other hand the w-eater slenderness of the auxilta,rybody (Q~)
which rem.il.tsby the tm.nsformat,50n A.

The pressure distribution is determined from Bernoulli’s
eouation and.the equation of state. It is advanta~eous to introduce
the limiting velocity ~ (outflow velocity of the ~as into the
vacuum). Thus it is possille to determine the Mach number at every
point of the contour and to compare pressure distributions for
various Mach numbers.

As example the press~u”edistributions for a certain body of
revolution were calculated in the compressible medium (vm = 0.64)
and in the medium of const,entvolume. The results are compiled
in table I.

Translated by J. Vanier
National Advisory Committee
for Aeronautics

., ,
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* compressible

0.03236

.04611

.02909

.01087

-.00874

-.02274

-.03061

--.03169

-.02476

-.01017

z~Incompreaslbl
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.06227

.01574

.022>5

-.C2240

-,01217

–.04275

-.02202

-.03563

–.00103
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~

:1 compressible
u
—-
0

0.98054

1.00808

1.02988

1.03439

1.03170

1.02417

1.01342

1.00111

.98859

.98734

0

~ ~ncompreealble
u

o

(0.98054)

1.02172

1.02795

1.03028

I.02803

1.02067

1.01509

99876

.99067

.97174

0

1.17049

.039C4

-.01601

-.05974

7.06964

-.06430

-.04820

-.02425

-.00193

002305

“ .02591

1.17049

~ lncompreanible”
q

1.0

.04091

-.04392

-.05668

-.06147

-.05686

-.04178

-.03042

-.00247

-.01858

-.05571

1.0

.80734j

.82712j
!

.82176]

.81176

.Wcgo

.78973

.78830,

--Jo

N
Cn
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